A Fuzzy ARTMAP Probability Estimator with Relevance Factor

نویسندگان

  • Razvan Andonie
  • Lucian Sasu
چکیده

An incremental, nonparametric probability estimation procedure using a variation of the Fuzzy ARTMAP (FAM) neural network is introduced. The resulted network, called Fuzzy ARTMAP with Relevance factor (FAMR), uses a relevance factor assigned to each sample pair, proportional to the importance of that pair during the learning phase. We prove that our probability estimator is correct. The FAMR can be used both as a classifier and as a probability estimator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence properties of a fuzzy ARTMAP network

FAMR (Fuzzy ARTMAP with Relevance factor) is a FAM (Fuzzy ARTMAP) neural network used for classification, probability estimation [3], [2], and function approximation [4]. FAMR uses a relevance factor assigned to each sample pair, proportional to the importance of that pair during the learning phase. Due to its incremental learning capability, FAMR can efficiently process large data sets and is ...

متن کامل

A fuzzy ARTMAP nonparametric probability estimator for nonstationary pattern recognition problems

An incremental, nonparametric probability estimation procedure using the fuzzy ARTMAP (adaptive resonance theory-supervised predictive mapping) neural network is introduced. In the slow-learning mode, fuzzy ARTMAP searches for patterns of data on which to build ever more accurate estimates. In max-nodes mode, the network initially learns a fixed number of categories, and weights are then adjust...

متن کامل

A Modified Fuzzy ARTMAP Architecture for Incremental Learning Function Approximation

We will focus here on approximating functions that map from the vector-valued real domain to the vector-valued real range. A Fuzzy ARTMAP (FAM) architecture, called Fuzzy Artmap with Relevance factor (FAMR, defined in [1]) is considered here as an alternative to function approximation. FAMR uses a relevance factor assigned to each sample pair, proportional to the importance of the respective pa...

متن کامل

A Novel Fuzzy ARTMAP Architecture with Adaptive Feature Weights based on Onicescu’s Informational Energy

Fuzzy ARTMAP with Relevance factor (FAMR) is a Fuzzy ARTMAP (FAM) neural architecture with the following property: Each training pair has a relevance factor assigned to it, proportional to the importance of that pair during the learning phase. Using a relevance factor adds more flexibility to the training phase, allowing ranking of sample pairs according to the confidence we have in the informa...

متن کامل

I. Fuzzy Artmap for Probabll..rry Est1mall0n Ii. Fuzzy Artmap

An incremental, nonparametric probability estimation procedure using the fuzzy ARTMAP (adaptive resonance theory-supervised predictive mapping) neural network is introduced. In the slow-learning mode, fuzzy ARTMAP searches for patterns of data on which to build ever more accurate estimates. In max-nodes mode, the network initially learns a fixed number of categories, and weights are then adjust...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003